21 research outputs found

    Lipschitz Robustness of Finite-state Transducers

    Get PDF
    We investigate the problem of checking if a finite-state transducer is robust to uncertainty in its input. Our notion of robustness is based on the analytic notion of Lipschitz continuity --- a transducer is K-(Lipschitz) robust if the perturbation in its output is at most K times the perturbation in its input. We quantify input and output perturbation using similarity functions. We show that K-robustness is undecidable even for deterministic transducers. We identify a class of functional transducers, which admits a polynomial time automata-theoretic decision procedure for K-robustness. This class includes Mealy machines and functional letter-to-letter transducers. We also study K-robustness of nondeterministic transducers. Since a nondeterministic transducer generates a set of output words for each input word, we quantify output perturbation using set-similarity functions. We show that K-robustness of nondeterministic transducers is undecidable, even for letter-to-letter transducers. We identify a class of set-similarity functions which admit decidable K-robustness of letter-to-letter transducers.Comment: In FSTTCS 201

    ImageEye: Batch Image Processing Using Program Synthesis

    Full text link
    This paper presents a new synthesis-based approach for batch image processing. Unlike existing tools that can only apply global edits to the entire image, our method can apply fine-grained edits to individual objects within the image. For example, our method can selectively blur or crop specific objects that have a certain property. To facilitate such fine-grained image editing tasks, we propose a neuro-symbolic domain-specific language (DSL) that combines pre-trained neural networks for image classification with other language constructs that enable symbolic reasoning. Our method can automatically learn programs in this DSL from user demonstrations by utilizing a novel synthesis algorithm. We have implemented the proposed technique in a tool called ImageEye and evaluated it on 50 image editing tasks. Our evaluation shows that ImageEye is able to automate 96% of these tasks

    LNCS

    Get PDF
    We present a formal framework for repairing infinite-state, imperative, sequential programs, with (possibly recursive) procedures and multiple assertions; the framework can generate repaired programs by modifying the original erroneous program in multiple program locations, and can ensure the readability of the repaired program using user-defined expression templates; the framework also generates a set of inductive assertions that serve as a proof of correctness of the repaired program. As a step toward integrating programmer intent and intuition in automated program repair, we present a cost-aware formulation - given a cost function associated with permissible statement modifications, the goal is to ensure that the total program modification cost does not exceed a given repair budget. As part of our predicate abstractionbased solution framework, we present a sound and complete algorithm for repair of Boolean programs. We have developed a prototype tool based on SMT solving and used it successfully to repair diverse errors in benchmark C programs

    Automatic generation of local repairs for boolean programs

    Get PDF
    Abstract-Automatic techniques for software verification focus on obtaining witnesses of program failure. Such counterexamples often fail to localize the precise cause of an error and usually do not suggest a repair strategy. We present an efficient algorithm to automatically generate a repair for an incorrect sequential Boolean program where program correctness is specified using a pre-condition and a post-condition. Our approach draws on standard techniques from predicate calculus to obtain annotations for the program statements. These annotations are then used to generate a synthesis query for each program statement, which if successful, yields a repair. Furthermore, we show that if a repair exists for a given program under specified conditions, our technique is always able to find it

    Towards Algorithmic Synthesis of Synchronization for Shared-Memory Concurrent Programs

    No full text
    We present a framework that takes a concurrent program composed of unsynchronized processes, along with a temporal specification of their global concurrent behaviour, and automatically generates a concurrent program with synchronization ensuring correct global behaviour. Our methodology supports finite-state concurrent programs composed of processes that may have local and shared variables, may be straight-line or branching programs, may be ongoing or terminating, and may have program-initialized or user-initialized variables. The specification language is an extension of propositional Computation Tree Logic (CTL) that enables easy specification of safety and liveness properties over control and data variables. The framework also supports synthesis of synchronization at different levels of abstraction and granularity
    corecore